ENGINE APU


AUXILIARY POWER UNIT

An auxiliary power unit (APU) is a device on a vehicle that provides energy for functions other than propulsion. They are commonly found on large aircraft and naval ships as well as some large land vehicles. Aircraft APUs generally produce 115 V alternating current (AC) at 400 Hz (rather than 50/60 Hz in mains supply), to run the electrical systems of the aircraft; others can produce 28 V direct current (DC).[1] APUs can provide power through single- or three-phase systems.

TRANSPORT AIRCRAFT

Function

APIC APS3200 APU for Airbus A320 family.
The primary purpose of an aircraft APU is to provide power to start the main engines. Turbine engines must be accelerated to a high rotational speed to provide sufficient air compression for self-sustaining operation. Smaller jet engines are usually started by an electric motor, while larger engines are usually started by an air turbine motor. Before the engines are to be turned, the APU is started, generally by a battery or hydraulic accumulator. Once the APU is running, it provides power (electric, pneumatic, or hydraulic, depending on the design) to start the aircraft's main engines.
To start, a jet engine requires pneumatic rotation of the turbine, AC-electrical fuel pumps, and an AC-electrical "flash" that ignites the fuel. As the turbine (behind the combustion chamber) is already rotating, the front inlet fans are also rotating. After the ignition, both fans and turbine speed up their rotation. As combustion stabilizes, the engine thereafter only needs the fuel to run at idle. The started engine can now replace the APU when starting up further engines. During flight the APU and its generator are not needed.
Honeywell GTCP36 APU with surrounding access panels removed
APUs are also used to run accessories while the engines are shut down. This allows the cabin to be comfortable while the passengers are boarding before the aircraft's engines are started. Electrical power is used to run systems for preflight checks. Some APUs are also connected to a hydraulic pump, allowing crews to operate hydraulic equipment (such as flight controls or flaps) prior to engine start. This function can also be used, on some aircraft, as a backup in flight in case of engine or hydraulic failure.
Aircraft with APUs can also accept electrical and pneumatic power from ground equipment when an APU has failed or is not to be used. Some airports reduce the use of APUs due to noise and pollution, and ground power is used when possible.
APUs fitted to extended-range twin-engine operations (ETOPS) aircraft are a critical safety device, as they supply backup electricity and compressed air in place of the dead engine or failed main engine generator. While some APUs may not be startable in flight, ETOPS-compliant APUs must be flight-startable at altitudes up to the aircraft service ceiling. Recent applications have specified starting up to 43,000 ft (13,000 m) from a complete cold-soak condition such as the Hamilton Sundstrand APS5000 for the Boeing 787 Dreamliner. If the APU or its electrical generator is not available, the aircraft cannot be released for ETOPS flight and is forced to take a longer non-ETOPS route.
APUs providing electricity at 400 Hz are smaller and lighter than their 50/60 Hz counterparts, but are costlier; the drawback being that such high frequency systems suffer from voltage drops.

History

The Riedel 2-stroke engine used as the pioneering example of an APU, to turn over the central shaft of both World War II-era German BMW 003 and Junkers Jumo 004 jet engines.
The Riedel APU unit installed on a preserved BMW 003 jet engine.
During World War I, the British Coastal class blimps, one of several types of airship operated by the Royal Navy, carried a 1.75 horsepower (1.30 kW) ABC auxiliary engine. These powered a generator for the craft's radio transmitter and, in an emergency, could power an auxiliary air blower. One of the first military fixed-wing aircraft to use an APU was the British, World War 1, Supermarine Nighthawk, an anti-Zeppelin Night fighter.
During World War II, a number of large American military aircraft were fitted with APUs. These were typically known as putt–putts, even in official training documents. The putt-putt on the B-29 Superfortress bomber was fitted in the unpressurised section at the rear of the aircraft. Various models of four-stroke, Flat-twin or V-twin engines were used. The 7 horsepower (5.2 kW) engine drove a P2, DC generator, rated 28.5 Volts and 200 Amps (several of the same P2 generators, driven by the main engines, were the B-29's DC power source in flight). The putt-putt provided power for starting the main engines and was used after take-off to a height of 10,000 feet (3,000 m). The putt-putt was restarted when the B-29 was descending to land.
Some models of the B-24 Liberator had a putt–putt fitted at the front of the aircraft, inside the nose-wheel compartment. Some models of the Douglas C-47 Skytrain transport aircraft carried a putt-putt under the cockpit floor.
The first German jet engines built during the Second World War used a mechanical APU starting system designed by the German engineer Norbert Riedel. It consisted of a 10 horsepower (7.5 kW) two-stroke flat engine, which for the Junkers Jumo 004 design was hidden in the intake diverter, essentially functioning as a pioneering example of an auxiliary power unit for starting a jet engine. A hole in the extreme nose of the centrebody contained a manual pull-handle which started the piston engine, which in turn rotated the compressor. Two small petrol tanks were fitted in the annular intake. The engine was considered an extreme short stroke (bore / stroke: 70 mm / 35 mm = 2:1) design so it could fit in the hub of the turbine compressor. For reduction it had an integrated planetary gear. It was produced in Victoria in Nuremberg and served as a mechanical APU-style starter for all three German jet engine designs to have made it to at least the prototype stage before May 1945: the Junkers Jumo 004, the BMW 003, and the prototypes (19 built) of the more advanced Heinkel HeS 011 engine, which mounted it just above the intake passage in the Heinkel-crafted sheetmetal of the engine nacelle nose.
The Boeing 727 in 1963 was the first jetliner to feature a gas turbine APU, allowing it to operate at smaller airports, independent from ground facilities. The APU can be identified on many modern airliners by an exhaust pipe at the aircraft's tail.

Sections

A typical gas turbine APU for commercial transport aircraft comprises three main sections:

Power section

The power section is the gas generator portion of the engine and produces all the shaft power for the APU.

Load compressor section

The load compressor is generally a shaft-mounted compressor that provides pneumatic power for the aircraft, though some APUs extract bleed air from the power section compressor. There are two actuated devices: the inlet guide vanes that regulate airflow to the load compressor and the surge control valve that maintains stable or surge-free operation of the turbo machine.

Gearbox section

The gearbox transfers power from the main shaft of the engine to an oil-cooled generator for electrical power. Within the gearbox, power is also transferred to engine accessories such as the fuel control unit, the lubrication module, and cooling fan. In addition, there is also a starter motor connected through the gear train to perform the starting function of the APU. Some APU designs use a combination starter/generator for APU starting and electrical power generation to reduce complexity.

On the Boeing 787 more-electric aircraft, the APU delivers only electricity to the aircraft. The absence of a pneumatic system simplifies the design, but high demand for electricity requires heavier generators.
Onboard solid oxide fuel cell (SOFC) APUs are being researched.

Manufacturers

Two main corporations compete in the aircraft APU market: United Technologies Corporation (through its subsidiaries Pratt & Whitney Canada and Pratt & Whitney AeroPower), and Honeywell International Inc.

Military aircraft

Smaller military aircraft, such as fighters and attack aircraft, feature auxiliary power systems which are different from those used in transport aircraft. The functions of engine starting and providing electrical and hydraulic power are divided between two units, the jet fuel starter and the emergency power unit.

A jet fuel starter (JFS) is a small turboshaft engine designed to drive a jet engine to its self-accelerating RPM. Rather than supplying bleed air to a starter motor in the manner of an APU, a JFS output shaft is mechanically connected to an engine. As soon as the JFS begins to turn, the engine turns; unlike APUs, these starters are not designed to produce electrical power when engines are not running.

Jet fuel starters use a free power turbine section, but the method of connecting it to the engine depends on the aircraft design. In single-engine aircraft such as the A-7 Corsair II and F-16 Fighting Falcon, the JFS power section is always connected to the main engine through the engine's accessory gearbox. In contrast, the twin-engine F-15 Eagle features a single JFS, and the JFS power section is connected through a central gearbox which can be engaged to one engine at a time. On the F-15, the jet fuel starter (JFS) is mated with a central gearbox (CGB). The CGB has extendable pawl shafts that extend out to reach the aircraft mounted accessory drive (AMAD) mounted in front of each engine. The AMAD is connected to the jet engine by the power takeoff (PTO) shaft. As the engine accelerates to starting speed, the PTO shaft becomes the method to drive the AMAD during flight. Once the aircraft engine has started and begins driving the AMAD, the pawl shaft on the CGB returns to its retracted position and the JFS is shut down.

Emergency power unit

Emergency hydraulic and electric power are provided by a different type of gas turbine engine. Unlike most gas turbines, an emergency power unit has no gas compressor or ignitors, and uses a combination of hydrazine and water, rather than jet fuel. When the hydrazine and water mixture is released and passes across a catalyst of iridium, it spontaneously ignites, creating hot expanding gases which drive the turbine. The power created is transmitted through a gearbox to drive an electrical generator and hydraulic pump.
The hydrazine is contained in a sealed, nitrogen charged accumulator. When the system is armed, the hydrazine is released whenever the engine-driven generators go off-line, or if all engine-driven hydraulic pumps fail.

Komentar

Postingan Populer